Paper is out: Text-based LSTM networks for Automatic Music Composition

arXiv link: here, and accepted in The 1st Conference on Computer Simulation of Musical Creativity, 2016.


In this paper, we introduce new methods and discuss results of text-based LSTM (Long Short-Term Memory) networks for automatic music composition. The proposed network is designed to learn relationships within text documents that represent chord progressions and drum tracks in two case studies. In the experiments, word-RNNs (Recurrent Neural Networks) show good results for both cases, while character-based RNNs (char-RNNs) only succeed to learn chord progressions. The proposed system can be used for fully automatic composition or as semi-automatic systems that help humans to compose music by controlling a diversity parameter of the model.

Yeah, it’s simply a merged pdf from my two blog posts (1,2) with little updates. Perhaps still worth reading if they attracted you.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s